Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1653, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395882

RESUMO

Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Mesonefro , Gônadas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo
2.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836741

RESUMO

Flavoring olive oils is a new trend in consumer preferences, and different enrichment techniques can be used. Coextraction of olives with a flavoring agent is an option for obtaining a flavored product without the need for further operations. Moreover, ultrasound (US) assisted extraction is an emergent technology able to increase extractability. Combining US and coextraction, it is possible to obtain new products using different types of olives (e.g., cultivar and ripening stage), ingredient(s) with the greatest flavoring and/or bioactive potential, as well as extraction conditions. In the present study, mastic thyme (Thymus mastichina L.) (TM) and lemon thyme (Thymus x citriodorus) (TC) were used for flavoring Cornicabra oils by coextraction. The coextraction trials were performed by (i) thyme addition to the olives during crushing or malaxation and (ii) US application before malaxation. Several parameters were evaluated in the oil: quality criteria parameters, total phenols, fatty acid composition, chlorophyll pigments, phenolic profile and oxidative stability. US application did not change the phenolic profile of Cornicabra olive oils, while the enrichment of olive oils with phenolic compounds or pigments by coextraction was very dependent on the thyme used. TM enrichment showed an improvement of several new phenolic compounds in the oils, while with TC, fewer new phenols were observed. In turn, in the trials with TC, the extraction of chlorophyll pigments was higher, particularly in crushing coprocessing. Moreover, the oils obtained with US and TM added in the mill or in the malaxator showed lower phenol decrease (59%) than oils flavored with TC (76% decrease) or Cornicabra virgin olive oil (80% decrease) over an 8-month storage period. Multivariate data analysis, considering quality parameters, pigments and phenolic contents, showed that flavored oils were mainly grouped by age.


Assuntos
Olea , Thymus (Planta) , Azeite de Oliva/análise , Aromatizantes/análise , Fenóis/análise , Clorofila , Óleos de Plantas
3.
STAR Protoc ; 4(1): 102016, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36640365

RESUMO

Mesenchymal stem/stromal cells (MSCs) can differentiate into osteoblasts under appropriate conditions. PDGFRß signaling controls MSC osteogenic potential both transcriptomically and in culture. Here, we present a "computer to the bench" protocol to analyze changes in MSC osteogenic potential at transcriptomic and cellular level in the absence of PDGFRß. We detail the preparation of cells from mouse embryos, the analysis of transcriptomic changes from single-cell RNA-sequencing data, the procedure for MSC derivation and culture, and an osteogenic assay for functional validation. For complete details on the use and execution of this protocol, please refer to Sá da Bandeira et al. (2022).1.


Assuntos
Células-Tronco Mesenquimais , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Diferenciação Celular/genética , Osteogênese/genética , Perfilação da Expressão Gênica
4.
Cell Rep ; 40(3): 111114, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858557

RESUMO

Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRß signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRß is involved. Here, we show that PDGFRß is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRß+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRß+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro.


Assuntos
Mesonefro , Peixe-Zebra , Animais , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Células Estromais
5.
Nat Metab ; 4(1): 123-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102339

RESUMO

Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Matriz Extracelular/metabolismo , Fosforilação Oxidativa , Via de Pentose Fosfato , Animais , Biomarcadores , Elastina/biossíntese , Elastina/genética , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Hemodinâmica , Camundongos , Camundongos Knockout , Modelos Biológicos , Estresse Oxidativo , Pentosefosfatos/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...